9 | 0 | 17 |
下载次数 | 被引频次 | 阅读次数 |
选择机织蜂巢组织、机织方格组织和“他他米”刺绣工艺3种不同织物,探究了浸渍和丝网印刷2种水凝胶嵌入工艺对纺织电极电阻的影响。测试了展平状态和不同弯曲程度下嵌入水凝胶前后纺织电极电阻的变化,并结合纺织电极微观结构分析了电极电阻变化机理。研究结果表明:浸渍工艺形成双层水凝胶,导致电极电阻比未嵌入水凝胶时增加4~49倍;丝网印刷工艺形成单层水凝胶,导致电极电阻与未嵌入水凝胶时相比显著降低,其中蜂巢组织电极电阻降幅最大,达64.8%,刺绣工艺纺织电极电阻沿经纬纱方向的差异消除,且所有纺织电极在不同弯曲及回复状态下的电阻波动显著降低,导电稳定性提升;通过丝网印刷工艺嵌入水凝胶可有效优化纺织电极的电学性能。研究为可穿戴设备中柔性电极的设计提供理论支持。
Abstract:To investigate the effects of impregnation and silk-screen printing on hydrogel technology on the electrical conductivity of textile-based electrodes, three different structures including woven honeycomb, woven grid and “Tatami” embroidery techniques were selected to build fabrics in this paper. The variation of resistance in the flattening state and bending degree were tested experimentally, and the mechanism was analyzed in combination with the microstructure. The results show that the double layer of hydrogel is formed by the impregnation process, and the resistance value is increased by 4~49 times. The single layer of hydrogel was formed by the screen-printing process, and the resistance was significantly reduced, among which the honeycomb tissue electrode decreased by up to 64.8%. After the hydrogel treatment, the resistance difference along the warp and weft direction of the embroidery electrode was eliminated, and the resistance fluctuation of all electrodes under different bending and recovery states were significantly reduced, and the conductive stability was improved. The screen-printing process combined with hydrogel can effectively optimize the electrical properties of textile-based electrodes, and provide theoretical support for the design of textile-based electrodes in wearable devices.
[1] RAJANNA R R,SRIRAAM N,VITTAL P R,et al.Performance evaluation of woven conductive dry textile electrodes for continuous ECG signals acquisition[J].IEEE Sensors Journal,2020,20(3):1573-1581.
[2] ZHAO J J,DENG J W,LIANG W J,et al.Water-retentive,3D knitted textile electrode for long-term and motion state bioelectrical signal acquisition[J].Composites Science and Technology,2022,227:109606.
[3] RUSANEN M,KAINULAINEN S,KORKALAINEN H,et al.Technical performance of textile-based dry forehead electrodes compared with medical-grade overnight home sleep recordings[J].IEEE Access,2021,9:157902-157915.
[4] 王建萍,邵熠萌,杨雅岚,等.针迹类型对表面肌电用刺绣型织物电极性能影响[J].纺织学报,2024,45(7):55-62.
[5] XIAO X L,PIRBHULAL S,DONG K,et al.Performance evaluation of plain weave and honeycomb weave electrodes for human ECG monitoring[J].Journal of Sensors,2017(1):7539840.
[6] 林璐,孙吉海,肖学良.五枚三飞经面缎纹导电织物电极的心电采集性能[J].上海纺织科技,2021,49(10):50-53,56.
[7] 袁会锦,张辉,谢光银.织物结构对纺织结构电极阻抗性能的影响[J].纺织学报,2015,36(9):44-49.
[8] 王恬雨,王傲,曹少杰,等.刺绣工艺影响金属混纺纱线织物电极的结构与性能[J].传感技术学报,2023,36(10):1522-1530.
[9] 王责默,戚灵云,任松,等.电活性纤维柔性心电电极的研究进展[J].棉纺织技术,2022,50(12):78-84.
[10] HE K,LIU Z Y,WAN C J,et al.An on-skin electrode with anti-epidermal-surface-lipid function based on a zwitterionic polymer brush[J].Advanced Materials,2020,32(24):2001130.
[11] 张志铖,吴子轩,吴进.水凝胶基传感器电极的研究进展[J].材料研究与应用,2023,17(3):469-482.
[12] 陈一,李朔,李佳新,等.导电水凝胶在柔性电子器件领域的研究进展[J].包装学报,2023,15(6):91-98.
[13] KREBS F C.Fabrication and processing of polymer solar cells:A review of printing and coating techniques[J].Solar Energy Materials and Solar Cells,2009,93(4):394-412.
[14] 张帆,毛钺程,申路阳,等.纤维素基光致变色水凝胶制备及织物应用性能[J].精细化工,2025,42(1):203-214.
[15] 郭静,胡钒,张红娟,等.光致变色纺织品的制备方法及其应用[J].上海纺织科技,2022,50(12):8-12,43.
[16] HUIGEN E,PEPER A,GRIMBERGEN C A.Investigation into the origin of the noise of surface electrodes[J].Medical and Biological Engineering and Computing,2002,40(3):332-338.
[17] 冯源.织物电极的制备及动态电-力学稳定性研究[D].郑州:中原工学院,2023.
基本信息:
DOI:
中图分类号:TS106;TQ427.26
引用信息:
[1]李紫薇,丁亚茹,郑茜等.不同工艺嵌入水凝胶后纺织电极电阻变化研究[J].中原工学院学报,2025,36(04):32-38+88.
基金信息:
国家自然科学基金青年科学基金项目(62201629); 河南省高等学校重点科研项目(教科技[2022]309号)