52 | 0 | 14 |
下载次数 | 被引频次 | 阅读次数 |
针对植保无人机在多个地块间执行喷洒任务的作业次序规划问题,建立农药喷洒任务的最小化飞行里程目标函数。考虑长距离作业下的载重和续航约束,采用改进的蚁群算法求解该目标函数。通过对启发式函数与挥发系数进行改进,并对挥发系数的下限进行限制,避免了算法陷入局部最优解。仿真结果表明,相比标准蚁群算法,采用所提出的改进蚁群算法,在飞行总里程上缩短了6.2%,且具有更强的路径寻优能力,对作业次序的规划也更加合理。
Abstract:To address the problem of operation sequence planning for plant protection drones to perform spraying tasks among multiple plots, the objective function of minimizing flight mileage for pesticide spraying tasks is established. Considering the load and endurance constraints under long-distance operation, an improved ant colony algorithm is proposed to solve this objective function. By improving the heuristic function and the volatility coefficient and restricting the lower limit of the volatility coefficient, the slow convergence of the algorithm can be avoided. The simulation results show that, compared with the traditional ant colony algorithm, the proposed improved ant colony algorithm optimizes the total flight mileage by 6.2%, and has a stronger path optimization ability and a more efficient planning of the operation sequence.
[1] 李方敏.乡村振兴视阈下我国当前智慧农业发展问题研究[J].中国科技产业,2024(3):68-70.
[2] 韩明睿.无人机在乡村振兴精准农业中的应用研究——基于汉语语言多维视角选择[J].农机化研究,2024,46(8):211-215.
[3] 王正宝.农业机械智能化技术在农业生产中的应用策略[J].南方农机,2024,55(2):85-87.
[4] 范文超.植保无人机在现代农业发展中运用分析[J].河北农机,2023(18):13-15.
[5] VALENTE J,DEL CERRO J,BARRIENTOS A,et al.Aerial coverage optimization in precision agriculture management:A musical harmony inspired approach[J].Computers and Electronics in Agriculture,2013,99:153-159.
[6] 王宇,陈海涛,李海川.基于引力搜索算法的植保无人机三维路径规划方法[J].农业机械学报,2018,49(2):28-33,21.
[7] 黄小毛,张垒,TANG L.,等.复杂边界田块旋翼无人机自主作业路径规划[J].农业机械学报,2020,51(3):34-42.
[8] 唐灿,宗望远,黄小毛,等.农用无人机多机多田块作业路径规划算法[J].华中农业大学学报,2021,40(5):187-194.
[9] 徐博,陈立平,谭彧,等.多架次作业植保无人机最小能耗航迹规划算法研究[J].农业机械学报,2015,46(11):36-42.
[10] HUANG J H,FU W X,LUO S,et al.A practical interlacing-based coverage path planning method for fixed-wing UAV photogrammetry in convex polygon regions[J].Aerospace,2022,9(9):521.
[11] VASQUEZ-GOMEZ J I,MARCIANO-MELCHOR M,VALENTIN L,et al.Coverage path planning for 2D convex regions[J].Journal of Intelligent & Robotic Systems,2020,97(1):81-94.
[12] 郭启敏,张鹏,姜俊,等.基于改进蚁群算法的凹区域无人侦察机覆盖航线规划[J].电光与控制,2024,31(8):23-31.
[13] 何雅颖,范昕炜.改进蚁群算法在机器人路径规划中的应用[J].计算机工程与应用,2021,57(16):276-282.
[14] 杨会甲,张亚军,王鹏杰,等.基于混合蚁群算法的无人化农机路径寻优研究[J].湖北农业科学,2024,63(8):247-251.
[15] 王海琛,吴华瑞,朱华吉,等.基于改进蚁群算法的蔬菜大田无人农机路径优化[J].中国农机化学报,2023,44(4):187-194.
[16] 马培博,钟麟.基于蚁群算法的无人机侦察任务分配[J].无线电通信技术,2022,48(2):371-375.
基本信息:
DOI:
中图分类号:S252.3;TP18
引用信息:
[1]周新鹏,张利民,胡博昊等.基于改进蚁群算法的植保无人机任务分配研究[J].中原工学院学报,2025,36(04):11-15.
基金信息:
河南省重点研发与推广专项(科技攻关)项目(232102111129); 河南省重点研发专项(241111210100)