7 | 0 | 20 |
下载次数 | 被引频次 | 阅读次数 |
为提升织物染色配方的智能预测效果,采用反射光谱配色方法,以染色织物的分光反射率R(λ)作为输入数据,以染料配方为输出数据,分别构建了基于深度学习的卷积神经网络(CNN)和灰狼优化算法(GWO)优化的卷积神经网络(GWO-CNN)的智能配色模型。为全面评估模型性能,选取拟合度R2和实际配方与预测配方的平均绝对误差作为核心评价指标,模型训练与验证结果表明:GWO-CNN配色模型的拟合度R2为0.991,优于单一CNN配色模型的0.964;在对3种染料配方的预测中,GWO-CNN模型的预测结果与真实值之间的平均绝对误差分别为0.006、0.004和0.004,小于或等于CNN模型的0.007、0.005和0.004。由以上结果可以得出以下结论:采用GWO-CNN配色模型可有效提升织物染色配方的预测效果。
Abstract:To improve the intelligent prediction of fabric dyeing formulas, this paper adopts the reflection spectrum color matching method, taking the spectral reflectance R(λ) of dyed fabrics as input data and the dye formulas as output data, and constructs intelligent color matching models based on the deep learning model Convolutional Neural Network(CNN) and the Convolutional Neural Network optimized by the Grey Wolf Optimizer(GWO-CNN) respectively. To comprehensively evaluate the models' performance, the coefficient of determination(R2) and the mean absolute error(MAE) between predicted and actual dye formulas were selected as key metrics. The training and validation results demonstrate that the GWO-CNN model achieved an R2 value of 0.991, outperforming the standalone CNN model's 0.964. In predicting the concentrations of three dyes, the GWO-CNN model exhibited MAEs of 0.006, 0.004, and 0.004 respectively, all lower than the CNN model's 0.007, 0.005, and 0.004. The research results demonstrate that the application of the GWO-CNN color matching model can effectively enhance the prediction of fabric dyeing formulas.
[1] 徐海松.颜色信息工程[M].杭州:浙江大学出版社,2005.
[2] 吕伟,方丽丽.基于三刺激值匹配与光谱匹配的油墨配色实验探究[J].数字印刷,2020(4):31-38.
[3] 石俊峰,郭宝峰,方俊龙,等.基于反射光谱特征的光谱匹配方法研究[C]//浙江省信号处理学会2015年年会——信号处理在大数据论文集.杭州:浙江省信号处理学会,2015:118-126.
[4] 王莹.基于改进BP神经网络的织物染色计算机配色算法研究[D].青岛:青岛大学,2008.
[5] 曹龙龙,凌凤.同色异谱现象的产生与控制[J].染整技术,2010,32(9):11-14,4.
[6] USUI S,ARAI Y,NAKAUCHI S.Neural networks for device-independent digital color imaging[J].Information Sciences,2000,123(1/2):115-125.
[7] 史爱松.基于RBF神经网络的遗传算法在织物配色中的应用研究[D].青岛:青岛大学,2005.
[8] 张安岭,张秉森.基于Elman神经网络的织物染色的配色[J].山东纺织科技,2006,47(3):37-39.
[9] 肖春华.基于高光谱测色的织物染色配方智能预测[D].杭州:浙江理工大学,2019.
[10] 冯诺亚.基于机器学习的计算机智能配色系统的设计与开发[D].郑州:中原工学院,2023.
[11] GOODFELLOW I,BENGIO Y,COURVILLE A.Deep learning[M].Cambridge,Mass:MIT Press,2016
[12] HAO X,ZHANG G G,MA S.Deep learning[J].International Journal of Semantic Computing,2016,10(3):417-439.
[13] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
[14] 李彦冬,郝宗波,雷航.卷积神经网络研究综述[J].计算机应用,2016,36(9):2508-2515,2565.
[15] GONZALEZ R C.Deep convolutional neural networks lecture notes[J].IEEE Signal Processing Magazine,2018,35(6):79-87.
[16] MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.
基本信息:
DOI:
中图分类号:TS193.13;TP18
引用信息:
[1]杨红英,杨玉斌,张戈等.基于GWO-CNN的织物染色配方智能预测模型[J].中原工学院学报,2025,36(04):26-31.
基金信息:
河南省高等学校重点科研项目(23A540002); 中原工学院研究生科研创新项目(YKY2023ZK03)